近年、生成AIの技術革新が進み、大規模言語モデル(LLM)がさまざまな分野で活用されています。しかし、LLMにはいくつかの課題があり、その解決策として注目されているのがRAG(検索拡張生成)です。本記事では、RAGがなぜ必要なのか、その理由とメリットについて解説します。 RAGとは? RAG(Retrieval-Augmented Generation)とは、大規模言語モデル(LLM)に外部情報を […]
プロンプトチェーン(Prompt Chain)とは? プロンプトチェーンとは、ChatGPTやClaudeのような大規模言語モデル(LLM)を使用してタスクを実行する際に、タスクを複数の小さなプロンプトに分割し、あるプロンプトの出力を次のプロンプトの入力として渡すプロンプトエンジニアリング手法のことを言います。 プロンプトチェーンのメリット プロンプトチェーンの応用 プロンプトチェーンは、LLMが […]
大規模言語モデルのFunction Callingとは? 大規模言語モデル(LLM)のハルシネーションを抑えるための技術の一つとして、Retrieval-Augmented Generation(RAG)があります。RAGは、プロンプトに文脈を追加するために外部データを検索するリトリーバーを使用し、その後ジェネレーター(LLM)に送ります。 RAGは静的なデータに対して有効である一方、リアルタイム […]
Embedding(エンべディング)とは? Embedding(エンべディング)とは、いわばデータの「翻訳」プロセスのようなものです。たとえば、私たちが日常で使う言葉や文章といった複雑な情報を、コンピュータが理解しやすいシンプルな数値の形に変換するプロセスのことです。具体的には、分類されたデータ、複雑なデータ、または多くの情報を含む大次元のデータ(large-dimensional data)を、 […]
ベクトル化とは? ベクトル化(Vectorization)は、入力データを数値の配列であるベクトルに変換するプロセスです。この変換は重要であり、ニューラルネットワークなどのMLアルゴリズムやモデルは、テキストや画像のような生のデータではなく、数値データを操作するためです。データをベクトルとして表現することで、数学的操作や線形代数の技術を適用して、データを効果的に分析し処理することができます。 ベク […]
プロンプトエンジニアリング(Prompt Engineering)とは? プロンプトエンジニアリング(Prompt Engineering)は、大規模言語モデル(LLM)などのAIシステムに対して、特定のタスクを効果的に実行させるために、どのようにプロンプト(入力テキスト)を設計するかという技術およびプロセスです。プロンプトは、モデルに対する指示や質問、またはタスクの説明として機能し、モデルが適切 […]
In-Context Learning(ICL)文脈内学習とは? In-Context Learning(ICL)文脈内学習は、事前に訓練された大規模言語モデル(LLM)が、モデルを微調整することなく新しいタスクに対応できるようにする技術です。この手法では、タスクのデモンストレーションを自然言語形式でプロンプトに統合し、LLMに入力します。LLMは、入力されたプロンプトからタスクの文脈を理解し、適 […]
Fine-tuning(ファインチューニング)とは? Fine-tuning(ファインチューニング)は、特定のタスクやドメインに合わせて、事前に訓練された大規模言語モデル(LLM)のパラメータを微調整するプロセスです。GPTなどの事前訓練済みの言語モデルは、幅広い言語知識を持っていますが、特定の領域における専門知識までカバーしているわけではありません。ファインチューニングを通じて、これらのモデルは […]
ChatGPTとは? ChatGPTとは、OpenAIによって開発された人工知能(AI)ベースのチャットボットです。自然言語処理(NLP)を使用して、人間のような会話を生成することができます。質問に答えたり、記事、ソーシャルメディアの投稿、エッセイ、コード、メールなど様々な形式のテキストを作成する能力を持っています。自然言語処理の応用例として、ChatGPTは生成AIの一形態であり、ユーザーがプロ […]
RAG ”ラグ”(Retrieval-Augmented Generation、検索拡張生成)は、大規模言語モデル(LLM)によるテキスト生成に、外部情報の検索を組み合わせることで、回答精度を向上させる技術のことです。「検索拡張生成」と訳され、外部情報の検索を組み合わせることで、大規模言語モデルの出力結果を簡単に最新の情報に更新できるようになる効果や、出力結果の根拠が明確になり、事実に基づかない情 […]